
The Mathematical Mechanics Behind the Groth16

Zero-knowledge Proving Protocol

Kaylee George

December 6, 2022

1 Introduction

Goldwasser, Micali and Rackoff [SGR89] introduced the notion of zero-knowledge proofs, a protocol
that allows one party (the prover) to convince another party (the verifier) that some specific statement
is true without revealing any information beyond the truthfulness of the statement. Zero-knowledge
proofs have the following properties:

1. Completeness: The prover can convince the verifier that a given statement is true by presenting
a valid witness.

2. Soundness: An adversarial prover cannot convince the verifier that a false statement is true.

3. Zero-knowledge: The proof does not reveal anything beyond the truth of the statement.

Blum, Feldman and Micali [MB88] then extended this notion to non-interactive zero-knowledge
(NIZK) proofs, where the prover and the verifier do not interactively communicate. Here, we aim to
explore a family of very efficient NIZK proving systems called zk-SNARKs, which stands for “Zero-
Knowledge Succinct Non-Interactive Argument of Knowledge.” A zk-SNARK is a succinct NIZK where
a prover can generate a succinct proof that allows for efficient verification by a computationally weak
verifier. More precisely, the proof size and the verification time grow sublinearly with the witness size.

Specifically, we examine the mathematical mechanics behind zk-SNARKs through the Groth16
proving system [Gro16]. First, we will review definitions to help the reader understand the components
that make up a NIZK argument. Then, we look at how the Groth16 proving protocol constructs a
zk-SNARK, in which a proof consists of only 3 group elements [Gro16].

2 Definitions & Preliminaries

In this section, we describe definitions and notation which will be used throughout the document.
We assume the reader is familiar with basic number theory and cryptography concepts, such as the
definition of a finite field F.

2.1 Non-Interactive zero-knowledge arguments of knowledge

A Non-Interactive Zero-Knowledge (NIZK) proof allows a prover to prove that for a public statement
x, she knows a witness w in which a binary relation (x,w) ∈ R holds. An efficient prover has the
following probabilistic polynomial algorithms (Setup, Prove, Vrfy, Sim):

1. (pk, vk) ← Setup(R): The setup procedure produces public parameters (1) pk (proving key):
a common reference string (CRS) that defines statement x, and (2) vk (verification key): a
simulation trapdoor1 for R. These keys are publicly available and only need to be generated
once for a given program.

1A simulated scheme can be computed using the trapdoor instead of an unknown secret key. In other words, simulation
trapdoor acts as oracle access to the verifier.

1

2. π ← Prove(R, pk, x, w): The prover takes the common reference string pk and (x,w) ∈ R and
returns an argument π.

3. 0/1← Verify(R, pk, x, π): The verifier rejects (0) or accepts (1) the given proof π. The function
will return 1 if (x,w) ∈ R is satisfied.

4. π ← Sim(R, vk, x): The simulator takes in the verification key vk (simulation trapdoor) and
returns argument π.

In the Setup function (also known as the key generator), R contains a secret security parameter
λ that prevents adversaries from creating fraud proofs, which we have omitted from notation for
simplicity. The simulator, Sim, rigorously shows that the verifier does not learn any information
beyond the validity of statement x. Because the simulation of an (adversarial) verifier is possible given
only statement x, we know the verifier learns nothing about the witness w.

We say (Setup, Prove, Vrfy, Sim) for R is a zk-SNARK if it satisfies perfect completeness,
perfect zero-knowledge, and computational knowledge soundness — which is a stronger notion of
soundness such that there exists an extractor that can compute the witness w whenever an adversary
produces a valid argument [Gro16].

2.2 Computation Space

In Groth16, we operate in groups over Fp. We define bilinear groups (p, G1, G2, GT) such that G1,
G2, GT are groups of prime order p. The pairing e: G1 x G2 → GT is a bilinear map2, g1 is a
generator3 for G1, g2 is a generator for G2, and e(g1, g2) is a generator for GT . Groth uses notation
where group elements are represented by their discrete logarithms: ga1 is represented as [a]1, g

b
2 as [b]2,

and e([a]1, [b]2)
c as [c]T . The group GT is distinct from both G1 and G2, and thus, [c]T cannot be an

input to the bilinear map e.
As conceptual grounding, the proof in Groth16’s zk-SNARK consists of 3 elliptic curve points: 2

elements in G1 and 1 element in G2.

2.3 Rank-1 Constraint Systems (R1CS)

Groth16 uses an Rank-1 Constraint System (R1CS) instance to commit to a relationship among vari-
ables in an arithmetic circuit, in which one constraint corresponds to one logic gate. Let A,B,C be
m× n matrices with entries from field F. An R1CS instance takes the form:

(z ·A) ◦ (z ·B) = z · C (1)

where · denotes dot product and ◦ denotes entry-wise product. Equation 1 is satisfiable if and only
if there exists a m-length vector z with z0 = 1. We require z0 = 1 because otherwise, z = 0 would
satisfy every R1CS instance.

3 Constructing a zk-SNARK

In order to construct a zk-SNARK, we need to convert a computational problem into an appropriate
form that the zk-SNARK can operate on. This entails a program (‘plain-text’ statement x) being
transformed into quadratic arithmetic program (QAP) form, such that the prover can show they have
a valid input (witness w) to the program (statement x).

3.1 Computation to Arithmetic Circuit

We first need to convert a computational program into an arithmetic circuit. An arithmetic circuit
C has input gates, output gates, intermediate gates, and directed wires between them. Each gate
computes an arithmetic expression of addition or multiplication.

We perform a “flattening” procedure to construct input gates, output gates, intermediate gates,
and directed wires. For the sake of example, let’s say the prover wants to show they know an x that

2A bilinear map means that given g1 ∈ G1, g2 ∈ G2, gt ∈ GT , a deterministic function e(g1, g2) = gt.
3A generator is an element g ∈ G∗

p where for every a ∈ G∗
p, g

k = a for some integer k.

2

satisfies the equation x3 + x+ 5 = 35. We turn this equation into a sequence of arithmetic gates that
handle at most two inputs per operation.

sym1 = x ∗ x (= x2)

y = sym1 ∗ x (= x3)

sym2 = y + x (= x3 + x)

out = sym2 + 5 (= x3 + x+ 5)

Figure 1: Example of Arithmetic Circuit that models the expression x3 + x+ 5. Here, x is input and
out is an output. In the second step, there are directed wires from sym1 and x to operation ∗.

3.2 Arithmetic circuit to R1CS

Next, we will discuss how any arithmetic circuit can be transformed into a R1CS instance. Consider
an arithmetic circuit {C, x, y} with addition and multiplication gates over a finite field F, where we
designate some input/output wires to specify statement x and the rest of the wires to specify witness
w. The prover wants to convince the verifier that there exists a witness w such that C(x,w) = y. If
the prover knows a witness w, then they know a vector z that satisfies the constraints of the R1CS
and thus, that statement x is true [But16].

To create an R1CS instance, we construct matrices A,B,C such that there exists a vector z that
satisfies equation 1 if and only if C(x,w) = y. The dimension of matrices A,B,C in the R1CS instance
is proportional to the number of gates in arithmetic circuit C. Ultimately, the R1CS instance will have
n constraint equations. We set the solution vector z to be an m-length vector, where z0 = 1. Each
remaining entry of z represents either the statement x or witness w. Namely, x = {z1, ..., zl} and
w = {zl+1, ..., zm} where l ≤ m. We compute a triple (a, b, c) for each gate, where a = Ak for row k of
A, as follows:

(a) Input gate in C: For input xi, we want entry zk in our R1CS instance to assert that zk = xi.
Thus, we set Ak to be the basis vector e1 ∈ Fl, Bk = ek ∈ Fl, and Ck = xi · e1.

(b) Multiplication operation logic gate in C: Let j1, j2 be the input nodes for the multiplication
gate. We want entry zk to assert (zj1 ·zj2 = zk). Thus, we set Ak = ej1 ∈ Fn−1, Bk = ej2 ∈ Fm−1,
and Ck = ek.

(c) Additive operation logic gate in C: Let j1, j2 be the input nodes for the addition gate. We
want entry zk to assert (zj1 + zj2 = zk). Thus, we set Ak = e1 ∈ Fn−1, Bk = ej1 + ej2 ∈ Fm−1,
and Ck = ek.

We do this until the full R1CS instance is created such that the solution vector z will satisfy equation
1 if and only if z is correct. A circuit may have many gates and thus result in many constraints in an
R1CS instance. To reduce computational overhead, we now transform our R1CS instance to a QAP.

3.3 R1CS to Quadratic Arithmetic Program (QAP)

At a high level, Quadratic Arithmetic Program (QAP) form is a mathematical representation that
encodes arithmetic constraints in polynomial vectors. Transforming the R1CS instance into QAP
form is necessary for zk-SNARKS because it allows us to simultaneously check all of the constraints
at once via dot product check on the polynomials, as opposed to checking the constraints one at a
time. The QAP consists of three polynomials (derived from R1CS matrices A,B,C) and a solution
polynomial (derived from solution vector z).

To construct our QAP, we want to associate the m-length solution vector z ∈ F with a univariate
polynomial gz that evaluates to 0 if and only if z satisfies the R1CS instance. We first construct
three polynomial coefficient matrices from our R1CS, such that when evaluated at some point, the
polynomial is binded in the same way as the R1CS system.

3

More precisely, we use Lagrange interpolation4 to derive these polynomials. First, to generate the
polynomial coefficients, we assign an arbitrary number to each constraint. Then, we fix the polynomials
such that their evaluation at that point xi is the value of the desired corresponding coefficient of the
constraint at that point, with an evaluation of 0 at all other evaluation points xk ̸=i.

Choose arbitrary distinct elements {r1, r2, ..., rn} ∈ F, where ri. We define polynomial coefficient
matrices such that each polynomial evaluation encodes an R1CS constraint:

Ai(rq) = Ai,q Bi(rq) = Bi,q Ci(rq) = Ci,q for i = 1, ...,m; q = 1, ..., n (2)

We sum these polynomial vector groups to define three univariate polynomials

A(X) =

m∑
i=0

ziAi(X) B(X) =

m∑
i=0

ziBi(X) C(X) =

m∑
i=0

ziCi(X) (3)

This defines our QAP. The witness vector z, where z0 = 1, will satisfy the n equations in the R1CS
instance if and only if at each point in {r1, r2, ...rn}:

m∑
i=0

ziAi(rq) ·
m∑
i=0

ziBi(rq) =

m∑
i=0

ziCi(rq) (4)

We know t(x) := (x − r1)(x − r2)...(x − rn) = Πn
q=1(x − rq) is the lowest degree monomial such

that t(rq) = 0 in each point. Thus, we can reformulate the above as:

m∑
i=0

ziAi(X) ·
m∑
i=0

ziBi(X) ≡
m∑
i=0

ziCi(X) mod t(X) (5)

Thus, the derived QAP defines the following relation R, where z0 = 1:

R =

x = (z1, ..., zl) ∈ Fl

w = (zl+1, ..., zm) ∈ Fm−l∑m
i=0 ziAi(X) ·

∑m
i=0 ziBi(X) ≡

∑m
i=0 ziCi(X) mod t(X)

(6)

3.4 Verifying the QAP

Let these QAP polynomials be defined as A(X), B(X), C(X) where A(X) =
∑m

i=0 ziAi(X) and sim-
ilarly for B,C. Let gz denote the d-degree polynomial, where d ≤ 2(n − 1) since A(X), B(X), C(X)
are at most degree n− 1:

gz(X) =

m∑
i=0

ziAi(X) ·
m∑
i=0

ziBi(X)−
m∑
i=0

ziCi(X) (7)

To verify the QAP, we show the existence of a low-degree polynomial h(X) = gz(X)
t(X) . We know

that t(X) has degree n and gz(X) has a degree strictly lower than 2n − 2. Thus, (x,w) ∈ R if there
exists a quotient polynomial h(X) with degree d ≤ n− 2. If and only if t(X)|gz(X), then there exists
an h(X) such that:

h(X) =
gz(X)

t(X)
=

∑m
i=0 ziAi(X) ·

∑m
i=0 ziBi(X)−

∑m
i=0 ziCi(X)

Πrq∈L(X − rq)
(8)

If h(X) exists, then all constraints were met. We can also rewrite this as:

m∑
i=0

ziAi(X) ·
m∑
i=0

ziBi(X)−
m∑
i=0

ziCi(X) = h(X)t(X)

4Given a set of n points, Lagrange interpolation allows us to derive a unique polynomial of degree n− 1 that passes
through (interpolates) all of these points.

4

4 Converting QAP to a Non-Interactive Proof Argument

Lastly, we convert our QAP to a Non-Interactive Zero-Knowledge (NIZK) argument with proofs con-
sisting of only 3 group elements. In his original paper [Gro16], Groth provides the NIZK construction
in two steps: (1) construct a Non-Interactive Linear Proof (NILP) argument for QAPs5 and (2) convert
it to pairing-based NIZK using a compilation technique. While NILPs have perfect completeness and
perfect zero-knowledge, the Groth16 proving system significantly improved performance using succinct
pairing-based NIZKs with proofs requiring only 3 group elements. For the purposes of this paper, I
skip the NILP construction as there are many overlapping components in the NIZK construction6.

4.1 Non-Interactive Zero-Knowledge (NIZK) arguments for QAP

Consider R = (p,G1,G2,GT , e, g1, g2, l, {Ai(X), Bi(X), Ci(X)}ni=0, t(X)). Recall x = (z1, ..., zl) ∈ Zl
p

and w = (zl+1, ..., zm) ∈ Zm−l
p , where z0 = 1. This relation defines a field Zp where:

A(X) ·B(X)− C(X) = h(X)t(X)

The prover must show that for public statement x = (z1...zl) and z0 = 1, she knows the witness
w = (zl+1...zm). Both the prover and the verifier will know the coefficients of Ai(X), Bi(X), Ci(X),
as well as t(X), which can be easily calculated once the number of constraints in the circuit is decided
upon. To create a proof, the prover will build the witness vector w and gz(X) using the public
Ai(X), Bi(X), Ci(X) polynomials. If w satifies gz(X), then the verifier will accept the proof. The

prover can derive the coefficients of h(X) by performing the evaluations and computing gz(X)
t(X) :

m∑
i=0

ziAi(rq) =

m∑
i=0

ziAi,q

m∑
i=0

ziBi(rq) =

m∑
i=0

ziBi,q

m∑
i=0

ziCi(rq) =

m∑
i=0

ziCi,q (9)

To compute the polynomial h(X) efficiently, the prover can utilize Fast-Fourier Transform tech-
niques in O(nlogn) operations in Zp(beyond the scope of this paper).

4.2 Trusted Setup

Groth16 uses a two-step trusted setup to generate the common reference string (CRS). The trusted
setup consists of two phases: the first is generic and the second is specific to the circuit.

As our CRS, we generate the random field elements (α, β, γ, δ, τ) ∈ Z∗
p. First, I will provide some

intuition as to how these values are used. Elements α, β are used to ensure A,B,C are consistent
with each other when using vector z. The product A · B has a linear dependence on α, β and is only
balanced out by C when z is consistent in all three A,B,C. The role of the other secret field elements
γ, δ are used to make the public input independent from the other witness components.

(Phase 1) Powers of Tau: we first compute

([τ0]1, [τ
1]1, [τ

2]1, ..., [τ
2(n−1)]1)

([τ0]2, [τ
1]2, [τ

2]2, ..., [τ
n−1)]2

[α]1 · ([τ0]1, [τ1]1, [τ2]1, ..., [τn−1]1)

[β]1 · ([τ0]1, [τ1]1, [τ2]1, ..., [τn−1]1)

[β]2

(Phase 2) Given Ai, Bi, Ci, we define polynomials Li: Li(X) = β ·Ai(X) +α ·Bi(X) +Ci(X). We
cannot compute Li(X) directly because α and β are private, so instead, we construct Li(τ) · g1 using
values computed in (Phase 1):

5A relation R in the form of a Non-Interactive Linear Proof (NILP) for a QAP instance looks like the following:
RNILP = (F, aux, l, {Ai(X), Bi(X), Ci(X)}ni=0, t(X)) in which l is the number of constraints, RNILP defines a statement

x = (z1, ..., zl) ∈ Fl and witness w = (zl+1, ..., zm) ∈ Fm−1 with z0 = 1.
6If the reader would like to learn more about NILP construction, I encourage them to look to [Gro16].

5

Proving key (pk):

([α]1, [β]1, [δ]1)

([τ0]1, [τ
1]1, [τ

2]1, ..., [τ
n−1]1)

[δ−1]1 · ([Ll(τ)]1, [Ll+1(τ)]1, ..., [Ln−1(τ)]1)

[δ−1]1 · ([τ0]1, [τ1]1, [τ2]1, ..., [τn−1]1) · [t(τ)]1
([β]2, [δ]2)

([τ0]2, [τ
1]2, [τ

2]2, ..., [τ
n−1]2)

Verification key (vk):

[α]1

[γ−1]1 · ([L0(τ)]1, [L1(τ)]1, [L2(τ)]1, ..., [Ll−1(τ)]1)

([β]2, [γ]2, [δ]2)

This trusted setup is critical for soundness. If δ is known, the prover can construct any δ−1 · P (τ)
of degree 2(n− 1), where otherwise, it’s constrained to the form δ−1 · h(τ) · t(τ).

For the security and zero-knowledge property of Groth16 proving system, it is critical that the
values (α, β, γ, δ, τ) are not known to anyone7. Since the release of Groth16, multi-party computation
protocols have been released to share the burden of the trusted setup, which I briefly discuss in 5.1.

4.3 Formal Groth16 NIZK argument

Formally, we arrive at the (Setup, Prove, Vfy, Sim) NIZK argument:

(1) (pk, vk) ← Setup(R): Choose vk = (α, β, γ, δ, τ) ∈ Z∗
p and compute proving key pk =

([pk1]1, [pk2]2).

pk1 = (α, β, δ, {τ i}n−1
i=0 ,

{
βAi(τ) + αBi(τ) + Ci(τ)

γ

}l

i=0

,

{
βAi(τ) + αBi(τ) + Ci(τ)

δ

}m

i=l+1

,

{
τ it(τ)

δ

}n−2

i=0

)

pk2 = (β, δ, γ, {τ i}n−1
i=0)

(2) π ← Prove(R, pk, x, w): Given witness w = (zl+1, ..., zm) and two random (r, s) ∈ Zp, compute
π = ([A]1, [C]1, [B]2), where

A = α+

m∑
i=0

ziAi(τ) + rδ B = β +

m∑
i=0

ziBi(τ) + sδ

C =

∑m
i=l+1 zi(βAi(τ) + αBi(τ) + Ci(τ)) + h(τ)t(τ)

δ
+As+Br−rsδ =

(L(τ) + h(τ)t(τ))

δ
+As+Br−rsδ

We use r, s to randomize proof generation to ensure the zero-knowledge property is satisfied. As
shown, all elements in A are elements in G1, such as α = α ·g1 and A0(τ) = A0 ·g1. Similarly, elements
in B are in G2, and elements in C are in G1. This gives rise to a proof that requires only 3 group
elements: π = ([A]1, [C]1, [B]2).

(3) 0/1← Vfy(R, pk, x, π): Parse π = ([A]1, [C]1, [B]2) ∈ G2
1 x G2. The verfier accepts the proof

π if and only if:

[A]1 · [B]2 = [α]1 · [β]2 +
l∑

i=0

zi

[
βAi(τ) + αBi(τ) + Ci(τ)

γ

]
1

· [γ]2 + [C]1 · [δ]2 (10)

Here, we can see how the Groth16 proving protocol operates in the computation space. Intuitively,
[A]1 · [B]2 represents the pairing e : G1 ×G2 → GT. Now, let us check that the above actually verifies
A(τ)B(τ) = C(τ) + h(τ)t(τ).

First we check the lefthand-side of 10:

7Because they must be securely disposed of, these values are known as toxic waste.

6

[A]1 · [B]2 = (α+A(τ) + rδ) · (β +B(τ) + sδ)

= αβ + αB(τ) + sαδ +A(τ)β +A(τ)B(τ) + sA(τ)δ + rδβ + rδB(τ) + srδδ

= A(τ)B(τ)+ (αβ + αB(τ) + sαδ +A(τ)β + sA(τ)δ + rδβ + rδB(τ) + srδδ)

Now the righthand-side:

= αβ + (βAi(τ) + αBi(τ) + Ci(τ)) + (h(τ)t(τ)) + sαδ + sA(τ)δ + srδδ + rβδ + rB(τ)δ + srδδ − rsδδ

= C(τ) + h(τ)t(τ)+ (αβ + αB(τ) + sαδ +A(τ)β + sA(τ)δ + rδβ + rδB(τ) + srδδ)

Thus, the verification procedure in 10 is equivalent to A(τ)B(τ) = C(τ) + h(τ)t(τ)! Because proof
π can then be verified using 3 pairing checks, Groth16 has constant time verification cost no matter
how big the R1CS is. This satisfies the succinctness property required of a zk-SNARK.

(4) π ← Sim(R, vk, x): Pick (A,B ∈ Zp) and compute a simulated proof π = ([A]1, [C]1, [B]2) with

C =
AB − αβ −

∑l
i=0 zi(βAi(X) + αBi(X) + Ci(X))

δ
.

4.4 Evaluation of zk-SNARK Properties

We say (Setup, Prove, Vfy, Sim) is a perfect non-interactive zero-knowledge argument of knowledge
for R if it has perfect completeness, perfect zero-knowledge, and computational knowledge soundness,
as described above. More formally, (Setup, Prove, Vfy, Sim) is a perfect NIZK if it has:

Perfect Completeness: an honest prover will convince an honest verfier. If for (x,w) ∈ R:

Pr [(pk, vk)← Setup(R);π ← Prove(R, pk, x, w) : Vfy(R, pk, x, π) = 1] = 1

Perfect Zero-Knowledge: An argument does not leak any information beyond the truth of
the statement. If for (x,w) ∈ R and all adversaries A:

Pr [(pk, vk)← Setup(R);π ← Prove(R, pk, x, w) : A(R, pk, vk, π) = 1] =

Pr [(pk, vk)← Setup(R);π ← Sim(R, vk, x) : A(R, pk, vk, π) = 1]
(11)

Computational Knowledge Soundness: A polynomial time extractor XA can compute a
witness w when the adversary produces a valid argument. In other words, the probability that an
adversary can produce a valid proof without w is negligible:

Pr [(pk, vk)← Setup(R); ((x, π);w)← (A||XA)(R, pk) : (x,w) /∈ R and Verify(R, pk, x, π)] ≈ 0

Completeness in Groth16 follows from an expansion of the pairing check. As discussed in the
Trusted Setup, Soundness follows from the values of (α, β, γ, δ, τ) being unknown and therefore, the
values the prover provides are linear combinations of the setup values. Zero-knowledge follows from
the uniformly randomness of A,B through r, s and C being fully determined through the claim.

4.5 Runtime

We compute runtime for arithmetic circuit satisfiability with l-element statement x, m wires, n logic
gates. The Groth16 zk-SNARK proving system achieves knowledge soundness security with a proof π
size 2G1+1G2, proof generation time of (m+3n− 1 E1, n E2), and a verification using 3 pairings and
l E1, where E is exponentiations [Gro16].

5 Discussion

Generally, zero-knowledge proofs are a meaningful cryptographic primitive because they allow for both
privacy and security guarantees when proving statements. Groth16 introduced the notion of succinct
NIZK arguments, in which everything ultimately compiles down to a single complex expression. While
Groth16 uses a NILP/NIZK at its core, later systems use polynomial commitment schemes (such as
PLONK) but also have larger proofs and more verification steps.

7

5.1 Appendix

Multi-party Computation (MPC): Multi-party computation protocols allow many participants to
share the burden of the trusted setup [BGM17]. Imagine we need values Si = α · βi · A with secret
α, β. Start with α = β = 1 and Si = A and share these with the first participant. The participant
generates random secret values a, b and computes S′

i = a · bi · Si = α′ · β′i · A with updated secrets
α′ = a · α and β′ = b · β. The participant passes S′

i to the next participant and the process repeats.
a · g2, b · g1 and bi · g2 are also published. We verify:

e(S0, a · g2) = e(S′
0, g2)

e(Si − 1, bi · g2) = e(S′
i, g2)

e(b · g1, bi−1 · g2) = e(g1, b
i · g2)

References

[BGM17] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-snark
parameters in the random beacon model. Cryptology ePrint Archive, Paper 2017/1050,
2017.

[But16] Vitalik Buterin. Quadratic arithmetic programs: From zero to hero, Dec 2016.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Annual interna-
tional conference on the theory and applications of cryptographic techniques, pages 305–326.
Springer, 2016.

[MB88] Silvio Micali Manuel Blum, Paul Feldman. Non-interactive zero-knowledge and its applica-
tions. page 103–112. STOC, 1988.

[SGR89] Silvio Micali Shafi Goldwasser and Charles Rackoff. The knowledge complexity of interactive
proof systems. page 18:186–208. SIAM J. Comput., 1989.

8

	Introduction
	Definitions & Preliminaries
	Non-Interactive zero-knowledge arguments of knowledge
	Computation Space
	Rank-1 Constraint Systems (R1CS)

	Constructing a zk-SNARK
	Computation to Arithmetic Circuit
	Arithmetic circuit to R1CS
	R1CS to Quadratic Arithmetic Program (QAP)
	Verifying the QAP

	Converting QAP to a Non-Interactive Proof Argument
	Non-Interactive Zero-Knowledge (NIZK) arguments for QAP
	Trusted Setup
	Formal Groth16 NIZK argument
	Evaluation of zk-SNARK Properties
	Runtime

	Discussion
	Appendix

